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Why Neural Search?

e Semantic understanding of data as opposed
to surface keywords: bridge the

e Context and relationships crucial in
interpreting meaning:

e Unstructured data accessible without O
classification and taxonomies, even
multi-lingual and cross-lingual
searching
e Multi-modal capabilities: potential to combine
text, audio, images and video

expanding the
horizon of
exploration
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A well tuned BM25 is hard to beat...
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36,227 results

% NAACL  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

02 Jun 2019  Jacob Devlin, Ming-Wei Chang, Kenton Lee & et al. (1)

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder
Representations from Transformers. ... BERT is conceptually simple and empiricall ... more
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wICLR+1 v ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
25Sep 2019  Zhenzhong Lan, Mingda Chen, Sebastian Goodman & et al. (3)

To address these problems, we present two parameter-reduction techniques to lower memory

consumption and increase the training speed of BERT~\citep{devlin2018bert}. ... Comprehensive empiric
... more
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% IJCNLP +1 - Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
09 Nov 2019  Nils Reimers & Iryna Gurevych

In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that
use siamese and triplet network structures to derive semantically meaningful ... more

Elasticsearch keyword index.

Query syntax: (phrase quotes, not,
and, or, flelded:search)

Filters: (Source, Date, Country,
Organization, Code)

BM25 + boosting:
Citation score

Recency

Author influence
Popularity (Twitter)
Code (GitHub stars)

What is a BERT?

Language model pre-training
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Dense Neural Retrieval, it's different...

Zeta Alpha BERT
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At the risk of oversimplifying the BERT method, it basically entails training a neural network to learn
“language” (please do not take this literally), and then this network is used as a backbone to..
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The growth of knowledge and research around language models has been amazing in the past few years.
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BM25 struggles on more complex queries

Zata A|pha low cost training BERT
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Dense retrieval “gets it"
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@) Discover Any time v Sources Vv Code v Countries v Organizations v Owner v
€3 Recommendations o
11,980 results Transformer Powered Search @ 6% = Relevance =
== People
* Favorites
|& My documents % TDS ' Training BERT at a University Visualization @ Explore more
13 Dec 2020 Yifan Ding
= Notes
If you're reading this post, you've probably heard about the remarkable performance of new machine 2 . -
v R Tags learning models like BERT, GPT-2/3, and other deep learning models for language, image, audio, and... . VOSviewer a < Q 0 L4 0
9 raining BERINBt a University
aic Modeljpg with BERT
Q_ Mytags Following Shared
{Large-Scale Rjfferentially Pri
v My tags ol o A
How lo'm BERT
B neural retrieval AN
& Findsimilar = Notes [] Tag % < : ™ A Benchmark fd =+ it

How to Train BERT with an Ac:

Bl approximate k-NN [BAS s
"3 S E; ERT: Effigient BERT T@y —_
Bl Question Answering 8 i & o uning gE@f‘ow—Res% @

warXiv  Distilling BERT for low complexity network training
long form qa &%

13 May 2021 Bansidhar Mangalwedhekar [ 1 & -
5 . _ . i . ) , , Distilling BERT fol
recommender syste.. 28 This paper studies the efficiency of transferring BERT learnings to low complexity models like BiLSTM, & ‘ i
BiLSTM with attention and shallow CNNs using sentiment analysis on SST-2 dataset. It also compare ... SITA Refined|BERT cOmpreSsi

Bl contrastive learning

more
.. g iden Costs of Low Qualit 49
Qi olincex 202 B 0 R4 @ PDFReader o @ 25
i 20 Documents: 50 | Similarity links: 560 | Groups: 5 -0.7
i transformer new vari.. &% © @ © & Findsimilar = Notes [] Tag ¢ < :
i .
: expertsearch 2% What are the low cost training BERT?
i citation analysis 2% orl et == sarXiv+1 © How to Train BERT with an Academic Budget i . .
Z Paper microscopes, public data repositories, and hosted notebooks
BERT 22 15 Apr 2021  Peter Izsak, Moshe Berchansky & Omer Levy P PeSiR P

(]
While large language models a la BERT are used ubiquitously in NLP, pretraining them is considered a 00 06
i financial time series... o X &

luxury that only a few well-funded industry labs can afford. How can one train such models witham ...




Zeta Alpha domain specific evaluation

We benchmark on ~100 queries in Al domain from 5 types:
short phrases, knowledge graph questions, quora questions,
freq. user queries, and paper titles.

Model P@10 R@10 FiI@10 MRR@10
ZA keyword retrieval 0.71 0.17 0.27 0.91
ZA dense retrieval 0.84 0.21 0.34 0.94

Challenges dense retrieval:

- Calibration
(always gets an
answer)

- Explainability

- g2doc vs doc2doc
seem to require
different
embeddings.




Combining dense and keyword search

User does not ask for two separate retrieval
mechanisms, but for relevant results.

P@10 MRR@10 | nDCG@10
Dense en keyword retrieval
top-10 overlap only ~ 15%. Keyword | 0.806 0.930 0.858
How can we combine the rankings? Dense 0.754 0.873 0.863
Sum: Sum 0.830 0.947 0.883
score(q,d) = sim(q,d)/sim__ (q,d) + BM25(q,d)/BM25_(q,d)
= e Mul 0.846 0.940 0.881

Mul:

seore{ny, d) = simig.d) = BM2G{q, ) RRF 0.833 0.957 0.877
RRF: (k=60)

1
RRF{gd My = Y
| me ki 77'"('};'“
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Advances in
Information Retrieval

44th European Conference on IR Research, ECIR 2022
Stavanger, Norway, April 10-14, 2022
Proceedings, Part |

M ECIR  Advances in Information Retrieval, Part 1,
44th European Conference on IR Research, ECIR
2022 Stavanger, Norway, April 1..

2022 Matthias Hagen, Suzan Verberne,
Craig Macdonald & et al. (4)
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Sooo excited to battle test such a large volume in
the Zeta Alpha PDF Reader. Go #ECIR2022!




Just released: PDF Reader + margin notes

Jakub Zavrel 07 Apr 12:52
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Approach 1
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Approach 3 Py, Magatron-Turing NLG (530B)
- Kaplan et al (2020) -

Parameters

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)

Megatron-Turing NLG (530B) We have definitely entered the exaFLOPs era of

Machine Learning.
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FLOPs
Chinchilla outperforms Gopher and the other

Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches, largemodels

along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal In fact it also outperforms GPT-3
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large

models (see Section 4.2).
Jakub Zavrel 07 Apr 12:52 LS

In this work, we revisit the question: Given a fixed FLOPs budget,' how should one trade-off model
size and the number of training tokens? To answer this question, we model the final pre-training loss?
L(N, D) as a function of the number of model parameters N, and the number of training tokens, D.
Since the computational budget C is a deterministic function FLOPs(N, D) of the number of seen
training tokens and model parameters, we are interested in minimizing L under the constraint ?? really ??

Nope (€Y, Dgpi (€) = argmin L(N, D).
N,D st FLOPS(N,0)=(




Just released: PDF Reader + search in and with notes

Search results based on the note content
For more control open in search interface.

Neural Retrieval allows strong
contextual search with
longish text notes:

Jakub Zavrel 07 Apr 20:28 Q ©

Given the importance of the
evaluating different approaches to train the prior. |
We compareboth the AR and diffusion priors
throughout our experiments. In all cases

(Sections 4.2, 4.4, and 4.5), we findthat the

diffusion prior outperforms the AR prior for
comparable model size and reduced training
compute

ion Models

haehun Shin & et al. (3)

Diffusion models learn to restore noisy data, which is corrupted with different levels of noise, by optimizing the weighted
sum of the corresponding loss terms, i.e., denoising score matching loss. In ... more
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Sep 2 Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings & et al. (3)
We introduce Autoregressive Diffusion Models (ARDMs), a model class encompassing and generalizing order-agnostic

autoregressive models (Uria et al., 2014) and absorbing discrete diffusion (Austin et a ... more
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o arXiv he Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder

May 2( Haowen Xu, Wenxiao Chen, Jinlin Lai & et al. (3)
Using powerful posterior distributions is a popular approach to achieving better variational inference. However, recent

works showed that the aggregated posterior may fail to match unit Gaussian pri ... more
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nt Reinforcement Learning through Transfer and Architectural Priors

2018 Benjamin Spector & Serge Belongie
Recent work in deep reinforcement learning has allowed algorithms to learn complex tasks such as Atari 2600 games
Jjust from the reward provided by the game, but these algorithms presently require mi ... more
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How about using a neural reranker?

Add monoT5 based cross-encoder (Pradeep, Nogueira and Lin, 2021) on top of BM25

First stage Second stage Prec@70 Recall@10 F1@10 MRR@10

keyword - 0.69 0.15 0.24 0.87
keyword rerank 30 0.71 0.15 0.25 0.91
keyword rerank 100 0.53 0.15 0.19 0.88

Marginal improvements or even degradation of results...
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Outliers (i.e., noisy docs) can fool the reranker 8

+rerank 30

Alpha Go Alpha Go

M Transformer Powered Search @

B Transformer Powered Search @

1]
(i)

Found 5,423 documents Found 5,423 documents

wmarXiv. From Gameplay to Symbolic Reasoning: Learning SAT Solver Heuristics % GitHub  CchessGo: Alpha Go for Chinese Chess

in the Style of Alpha(Go) Zero 2 October 2018 | mengyangbai
14 February 2018 | Fei Wang & Tiark Rompf Alpha Go for Chinese Chess ... more
In this paper, we present our approach of casting symbolic reasoning as games, and g Q

directly harnessing the power of deep reinforcement learning in the style of Alpha(Go) Zero
on symb ... more
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w GitHub saj

7 January 2019 | cjohnchen
»7Ds Understanding AlphaGo: how Al thinks and learns (Advanced) (v}

6 February 2020 | Shen Huang
This article will start with Deep Learning and go into the architecture of DeepMind Al, like

Alpha Go. ... more ® O © & Findsimilar = Notes [] Tag

< Find similar = Notes [] Tag ¥ :
= % GitHub  |eela-zero
19 September 2018 | ginwang
wGitHub  CchessGo: Alpha Go for Chinese Chess (]

2 October 2018 | mengyangbai
Alpha Go for Chinese Chess ... more
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We lose our boosting effects 87

I Transformer Powered Search @

Found 30,992 documents

wNAACL BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding
2 June 2019 | Jacob Devlin, Ming-Wei Chang, Kenton Lee & et al. (1)

We introduce a new language representation model called BERT, which stands
for Bidirectional Encoder Representations from Transformers. ... BERT is
conceptually simple and empiricall ... more
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warXiv. RoBERTa: A Robustly Optimized BERT Pretraining Approach
26 July 2019 | Yinhan Liu, Myle Ott, Naman Goyal & et al. (7)

We present a replication study of BERT pretraining (Devlin et al., 2019) that
carefully measures the impact of many key hyperparameters and training data
size. ... We find that BERT ... more
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Code
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Code

Found 30,992 documents
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i

wAAAI+1 v K-BERT: Enabling Language Representation with
Knowledge Graph.
5 May 2020 | Weijie Liu 0002, Peng Zhou, Zhe Zhao 0006 & et al. (4)

K-BERT can easily inject domain knowledge into the models by being equipped
with a KG without pre-training by itself because it is capable of loading model
parameters from the pre-trained more
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W AAAI+1 v Q-BERT: Hessian Based Ultra Low Precision Quantization
of BERT.
5 May 2020 | Sheng Shen, Zhen Dong, Jiayu Ye & et al. (5)

However, BERT based models have a prohibitive memory footprint and latency.
... Among all tasks, we observed the highest performance loss for BERT fine-
tuned on SQUAD. ... more
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Dense Retrieval + Reranker

Add monoT5 based cross-encoder (Pradeep, Nogueira and Lin, 2021) on top of ZA Dense (knn)

First stage Second stage Prec@10 Recall@10 F1@10 MRR@ 10

knn - 0.83 0.19 0.31 0.93
knn rerank 30 0.82 0.19 0.31 0.96
knn rerank 50 0.82 0.19 0.31 0.97
knn rerank 100 0.85 0.19 0.31 0.97

Marginal improvements, but at what cost?



Better top results

Alpha Go

@@ Transformer Powered Search @

11
&

Found 2,296 documents

»TDS Alpha beta filter
11 September 2020 | Nabil MADALI
The g and h coefficients refer to the two scaling factors, where g is the scaling we used for

the measurement, and h is the scaling for the change in measurement over time .
Measurement is typically...

® © ® & Findsimilar = Notes [ Tag ¥

warXiv. Bayesian Optimization in AlphaGo
17 December 2018 | Yutian Chen, Aja Huang, Ziyu Wang & et al. (4)

During the development of AlphaGo, its many hyper-parameters were tuned with Bayesian
optimization multiple times. This automatic tuning process resulted in substantial
improvements in playing stren ... more
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sarXiv. Hyper-Parameter Sweep on AlphaZero General
19 March 2019 | Hui Wang, Michael Emmerich, Mike Preuss & et al. (1)

Since AlphaGo and AlphaGo Zero have achieved breakground successes in the game of
Go, the programs have been generalized to solve other tasks. Subsequently, AlphaZero was
developed to play Go, Chess ... more
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Found 2,073 documents

warXiv. AlphaGomoku: An AlphaGo-based Gomoku Artificial Intelligence using
Curriculum Learning
27 September 2018 | Zheng Xie, XingYu Fu & JinYuan Yu

In this project, we combine AlphaGo algorithm with Curriculum Learning to crack the game
of Gomoku. Modifications like Double Networks Mechanism and Winning Value Decay are
implemented to solve the ... more
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=TDS Understanding AlphaGo, how Al think and learn (Fundamentals)
3 February 2020 | Shen Huang
Join me in an adventure of learning how game Al works...

@ @ @ & Find similar = Notes [] Tag w

wTDS Game Theory Concepts Within AlphaGo
10 May 2020 | Gabe Stechschulte

Go, arguably the world's oldest board game and originated in East Asia some 4,000 years
ago, is a game played amongst two players. Go is often played with 181 black and 180
white stones on a square...



Cross encoder reranking: Ouch, Performance!

top N api call Direct model call
10 0.9s 3.0s
30 1.9s 3.1s
50 4.2s 3.0s
100 4.7s 3.1s
1000 44 2s 3.4s




InPars: Data Augmentation for

Unsupervised IR

Few-shot input: 3 examples + Document d

Output: Question ¢ and prob p,

Document: We don't know a lot
about the effects of caffeine
during pregnancy on you and
your baby. So it's best to limit
the amount you get each day.
Question:

What are the
effects of caffeine
during pregnancy?

Select top K
(¢.d) pairs w.r.t. p,

Training pairs

Reranker

Relevancy
P(R=1|d.q)

10 Feb 2022

InPars: Data Augmentation for Information Retrieval

using Large Language Models

Luiz Bonifacio!®#, Hugo Abonizio'°*, Marzieh Fadaee'™, and Rodrigo Nogueiraf®#<*

Abstract

The information retrieval community has
rocently witnessed a revolution due to
large pretrained transformer models. An-
other key ingredient for this revolution
was the MS MARCO dataset. whose scale

and diversity has e
fer learning to val
not all IR tasks a
fit from one single
tensive rescarch in
shown that using

Ranking models are finetuned on a synthetic dataset built by augmenting

documents with queries using generative LLMs like GPT-3.

This represents our recipe for unsupervised domain adaptation.
With very good results on the BEIR benchmark

Zeta Alpha
°NeuralMind
#University of Campinas
“University of Waterloo

*All authors contributed cqually.
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Unsupervised Dataset Generation for Information Retrieval

ABSTRACT

The Information Retrieval (IR) community has recently witnessed a
revolution due to large pretrained transformer models. Another key
ingredient for this revolution was the MS MARCO dataset, whose
scale and diversity has enabled zero-shot transfer learning to vari-
ous tasks. However, not all IR tasks and domains can benefit from
one single dataset equally. Extensive research in various NLP tasks
has shown that using domain-specific training data, as opposed to
a general-purpose one, improves the performance of neural mod-
els [43, 54]. In this work, we harness the few-shot capabilities of
large pretrained language models as synthetic data generators for
IR tasks. We show that models finetuned solely on our unsuper-
vised dataset outperform strong baselines such as BM25 as well as
recently proposed self-supervised dense retrieval methods. Code,
models, and data are available at <hidden_ur1>.

CCS CONCEPTS
+ Information systems — Novelty in information retrieval; +
Computing methodologies — Neural networks.

KEYWORDS
Few-shot Models, Large Language Models, Generative Models,
Question Generation, Synthetic Datasets, Multi-stage Ranking

ACM Reference Form:
2018, Uns:

1. In Wood-

billions of parameters. As of February 2022, they charge 0.06 USD
per 1000 tokens for their largest model. If each candidate document
contains 250 tokens, naively using this API for a reranking task
would cost approximately 15 USD per query.

Dense retrievers [13, 14] avoid this expensive reranking step
by precomputing vector representations for each document in the
collection prior to retrieval. When a query comes in, only its vector
representations are computed, and a fast vector search framework
can be used to retrieve the nearest document vectors to the vec-
tor representation of the query [12]. Despite being computation-
ally cheaper at inference time, dense retrievers need one inference
pass to compute the vector representation of each document in
the collection, which also makes billion-parameter neural models
impracticable to be used as dense retrievers." Another challenge
in developing neural models for IR is the lack of domain-specific
training data. Manually constructing high-quality datasets is dif-
ficult as it requires queries from real users. While there are a few
general-purpose labeled data available [17, 28], they are not always
effective in generalizing to out-of-domain datasets [26, 44). For
this goal, zero-shot and few-shot learning models are in particular
promising. However, a cost-effective manner of using large LMs in
IR tasks is still an open question,

In this work, we propose a simple yet effective approach towards
efficiently using large LMs in retrieval and obtain improvements
across several IR datasets. Rather than using large LMs directly
in the retrieval nrocess. we harness them to gencrate labeled data




InPars: Data Augmentation for IR using LLM's

MARCO TREC-DL 2020 Robust04 NQ TRECC
MRR@10 MAP nDCG@10 MAP nDCG@20 nDCG@10 nDCG@10
Unsupervised
(1) BM25 0.1874  0.2876 0.4876  0.2531 0.4240 0.3290 0.6880
(2)  Contriever (Izacard et al., 2021) - - - - - 0.2580 0.2740
(3)  cpt-text (Neelakantan et al., 2022) 0.2270 - - - - - 0.4270
OpenAlI Search reranking 100 docs from BM25
(4) Ada (300M) $  0.3141 0.5161  0.2691 0.4847 0.4092 0.6757
(5)  Curie (6B) $ 0.3296 0.5422  0.2785 0.5053 0.4171 0.7251
(6) Davinci (175B) $  0.3163 0.5366  0.2790 0.5103 $ 0.6918
InPars (ours)
(7)  monoT5-220M 0.2585  0.3599 0.5764  0.2490 0.4268 0.3354 0.6666
(8) monoT5-3B 0.2967 0.4334 0.6612 0.3180 0.5181 0.5133 0.7835
Supervised [> MARCO]
(9)  Contriever (Izacard et al., 2021) - - - - - 0.4980 0.5960
(10) cpt-text (Neelakantan et al., 2022) - - - - - - 0.6490
(11) ColBERT-v2 (Santhanam et al., 2021) 0.3970 - - - - 0.5620 0.7380
(12) GPL (Wang et al., 2021) - - - - - - 0.7400
(13) miniLM reranker 10.3901 2 = - : 10.5330 10.7570
(14) monoT5-220M (Nogueira et al., 2020) 0.3810  0.4909 0.7141  0.3279 0.5298 0.5674 0.7775
(15) monoT5-3B (Nogueira et al., 2020) 0.3980 0.5281 0.7508 0.3876 0.6091 0.6334 0.7948

InPars (ours) [> MARCO > unsup in-domain]|
(16) monoT5-3B 0.3894  0.5087 0.7439 0.3967 0.6227 0.6297 0.8471 21




InPars: out of domain data augmentation

Example 1: \
Document: We don't know a lot about the effects of caffeine
during pregnancy on you and your baby. So it's best to limit the
amount you get each day. If you are pregnant, limit caffeine to
200 milligrams each day. This is about the amount in 1%2 8-ounce
cups of coffee or one 12-ounce cup of coffee.

Relevant Query: Is a little caffeine ok during pregnancy?

Example 2:

Document: Passiflora herbertiana. A rare passion fruit native to
Australia. Fruits are green-skinned, white fleshed, with an
unknown edible rating. Some sources list the fruit as edible, sweet
and tasty, while others list the fruits as being bitter and inedible.
Relevant Query: What fruit is native to Australia?

Example 3:

Document: The Canadian Armed Forces. 1 The first large-scale
Canadian peacekeeping mission started in Egypt on November 24,
1956. 2 There are approximately 65,000 Regular Force and 25,000
reservist members in the Canadian military. 3 In Canada, August 9
is designated as National Peacekeepers' Day.

Relevant Query: How large is the Canadian military?

Example 1: \
Document: We don't know a lot about the effects of caffeine
during pregnancy on you and your baby. So it's best to limit the
amount you get each day. If you are pregnant, limit caffeine to
200 milligrams each day. This is about the amount in 1%2 8-ounce
cups of coffee or one 12-ounce cup of coffee.

Good Question: How much caffeine is ok for a pregnant woman

on: Is a little caffeine ok during pregnancy?

Example 2:

Document: Passiflora herbertiana. A rare passion fruit native to
Australia. Fruits are green-skinned, white fleshed, with an
unknown edible rating. Some sources list the fruit as edible, sweet
and tasty, while others list the fruits as being bitter and inedible.
Good Question: What is Passiflora herbertiana (a rare passion
fruit) and how does it taste like?

1: What fruit is native to Australia?

Example 3:

Document: The Canadian Armed Forces. 1 The first large-scale
Canadian peacekeeping mission started in Egypt on November 24,
1956. 2 There are approximately 65,000 Regular Force and 25,000
reservist members in the Canadian military. 3 In Canada, August 9
is designated as National Peacekeepers' Day.

Good Question: Information on the Canadian Armed Forces size
and history.

Ba uestion: How large is the Canadian military?
Example 4: Example 4:
Document: {document_text} Document: {document_text}
Qelevant Query: / Qood Question: /

MRR@10

—@— INPARS
—dbe— CPT-TEXT

- == BM25

0.3 1.2 6 175
Billions of parameters

Figure 3: MRR@10 on the MS MARCO develop-
ment set achieved by InPars using monoT'5-220M
reranker trained on synthetic questions generated
by GPT-3 models of different sizes. Figures for
cpt-text are from (Neelakantan et al., 2022). Note
the log scale for the x-axis.
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Many other uses of dense semantic embeddings
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Many other uses of dense semantic embeddings

This document might be interesting to you, based on your 'crossencoder-imp' tag.

warXiv. R2-D2: A Modular Baseline for Open-Domain Question Answering
8 September 2021 | Martin Fajcik, Martin Docekal, Karel Ondrej & et al. (1)

This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice,
reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader,
generative reader and a mech ... more
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warXiv. On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets
8 September 2021

Pre-training language models (LMs) on large-scale unlabeled text data makes the
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