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Made in Amsterdam, since 2019.

Leverage Neural Language 
Understanding to help people 
make better AI supported 
decisions. 



Zeta Alpha AI discovery platform
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① Discover content using neural 
search, find similar, visualization, 
code popularity and social media.

② Organize your work in 
personalized topic tags

③ Receive timely need to know 
recommendations tailored to 
your interests 

④ Share and re-use knowledge 
with your team

AI focused technical content from arXiv, conferences, 
companies, blogs, news, github code, twitter 

+ import private data



Why Neural Search?

● Semantic understanding of data as opposed 
to surface keywords: bridge the lexical gap

● Context and relationships crucial in 
interpreting meaning: handles complex and 
relational queries

● Unstructured data accessible without 
classification and taxonomies, even 
multi-lingual and cross-lingual

● Multi-modal capabilities: potential to combine  
text, audio, images and video
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A well tuned BM25 is hard to beat…
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Elasticsearch keyword index. 

Query syntax: (phrase quotes, not, 
and, or, fielded:search)
Filters: (Source, Date, Country, 
Organization, Code)

BM25 + boosting:
● Citation score
● Recency 
● Author influence
● Popularity (Twitter)
● Code (GitHub stars)



Dense Neural Retrieval, it’s different…
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Our dense retrieval journey: 

1. Start with naive BERT [CLS]
2. Fine-tune using SSL
3. Inevitability of supervised
4. Adjustments for our domain
5. Dense retrieval > BM25



BM25 struggles on more complex queries
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Dense retrieval “gets it”
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Zeta Alpha domain specific evaluation

We benchmark on ~100 queries in AI domain from 5 types: 
short phrases, knowledge graph questions, quora questions, 
freq. user queries, and paper titles.

Model P@10 R@10 F1@10 MRR@10
ZA keyword retrieval 0.71 0.17 0.27 0.91
ZA dense retrieval 0.84 0.21 0.34 0.94
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Challenges dense retrieval:

- Calibration 
(always gets an 
answer)

- Explainability
- q2doc vs doc2doc 

seem to require 
different 
embeddings.



Combining dense and keyword search
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P@10 MRR@10 nDCG@10

Keyword 0.806 0.930 0.858

Dense 0.754 0.873 0.863

Sum 0.830 0.947 0.883

Mul 0.846 0.940 0.881

RRF 0.833 0.957 0.877

Sum:

Mul:

RRF: (k=60)

User does not ask for two separate retrieval 
mechanisms, but for relevant results.

Dense en keyword retrieval 
top-10 overlap only ~ 15%. 

How can we combine the rankings?



Just released: PDF Reader
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New! r
elease

d 8 Ap
ril
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Just released: PDF Reader + margin notes



Just released: PDF Reader + search in and with notes
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Neural Retrieval allows strong 
contextual search with 
longish text notes:



How about using a neural reranker?

First stage Second stage Prec@10 Recall@10 F1@10 MRR@10
keyword - 0.69 0.15 0.24 0.87
keyword rerank 30 0.71 0.15 0.25 0.91
keyword rerank 100 0.53 0.15 0.19 0.88

Add monoT5 based cross-encoder (Pradeep, Nogueira and Lin, 2021) on top of BM25

Marginal improvements or even degradation of results…



Outliers (i.e., noisy docs) can fool the reranker
+rerank 30



We lose our boosting effects 
+rerank 30



Dense Retrieval + Reranker

First stage Second stage Prec@10 Recall@10 F1@10 MRR@10
knn - 0.83 0.19 0.31 0.93
knn rerank 30 0.82 0.19 0.31 0.96
knn rerank 50 0.82 0.19 0.31 0.97
knn rerank 100 0.85 0.19 0.31 0.97

Add monoT5 based cross-encoder (Pradeep, Nogueira and Lin, 2021) on top of ZA Dense (knn)

Marginal improvements, but at what cost?



Better top results
+rerank 30



Cross encoder reranking: Ouch, Performance!

top N api call Direct model call
10 0.9s 3.0s
30 1.9s 3.1s
50 4.2s 3.0s
100 4.7s 3.1s
1000 44.2s 3.4s



InPars: Data Augmentation for Unsupervised IR

20

- Explain + results on BEIR

Ranking models are finetuned on a synthetic dataset built by augmenting 
documents with queries using generative LLMs  like GPT-3. 

This represents our recipe for unsupervised domain adaptation. 
With very good results on the BEIR benchmark…



InPars: Data Augmentation for IR using LLM’s
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InPars: out of domain data augmentation
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Many other uses of dense semantic embeddings
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Many other uses of dense semantic embeddings
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Many other uses of dense semantic embeddings
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Many other uses of dense semantic embeddings
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For more information: 
www.zeta-alpha.comGet more information, sign 

up to use the platform:

www.zeta-alpha.com

http://www.zeta-alpha.com
http://www.zeta-alpha.com

